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EXPERIENCE WITH fi

IMPLEMENTATION OF A

PROTOTYPE PROGRAMMING ENVIRONMENT

PART V

Bruce J. MacLennan
Computer Science Department

Naval Postgraduate School

Monterey. CA 93943

Abstract:

This is the fifth report of a series exploring the use of the £7 programming notation to prototype a pro-

gramming environment. This environment includes an interpreter, unparser, syntax directed editor,

command interpreter, debugger and code generator, and supports programming in a small applicative

language. The present report presents a code generator operating on abstract syntax trees. The code

generation process is implemented as an evaluator over a nonstandard domain. An implementation of

the code generator is listed in the appendices.

1. Introduction

Our goal in this series of reports*
I
MacLennan85b, MacLennan85c. MacLennan86a. MacLennan86bi is

to explore in the context of a very simple language the use of the Q programming notation [MacLen-

nan83, MacLennan85ai to implement some of the tools that constitute a programming environment.

In this report we define a code generator for abstract programs. The code generator will be a

member of the same family as the interpreter and the unparser. That is. it will be an evaluator for

abstract programs defined on the domain of code sequences. First we discuss machine and run-time

structure; next, informal translations; and finally present the translation rules.

2. Target Machine Structure

We will generate code for a stack machine with several special purpose registers ( EP. SP) and several

temporary registers (Tl. T2). It has the following instructions:

Support for this research was provided by the Office of Naval Research under contract N00014-86- WR-24092.



• LDC k — load constant

. ADD, SUB, MUL, DIV, EQL, etc. - arithmetic

• JMP /, JMPT / — unconditional jump, jump on true

• LBL / — define label

• SKIP 6 — skip down static chain

• LOD — load contents of variable

. ENTER, EXIT - block control

. CALL. RETURN - function control

. PUSH r. POP r - stack control

• BREAK - enter debugger

3. Run- Time Structure

We use a conventional static-chain implementation for statically-scoped languages. Note that this

stack-based activation record structure will not support function-valued functions, which are supported

by the interpreter. This incompatibility between the interpreter and code generator is very serious, but

not addressed in the present report, since it would not affect the use of H as a tool for writing the code

generator. Exercise for the reader: define a non-stack-based activation record structure that solves this

problem.

Consider the following program:

ilet A = 1

funcF X =

|

let B = ( X x A

)

lletC = 3

(if (X > 0)

then F (C + (X - B))

else ) I



F(Ax2) ]]

This diagram illustrates the run-time data structures when execution is within the 'let B = ...' block on

the recursive invocation of F:

- EP

Lh - f

Notice how the static links for both of F's activation records point to the environment denning F. The

ep/ip pair is the dynamic link.
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4. Informal Translation Rules

4.1 Constants, Variables and Applications

For constants we merely stack the constant value:

k => LDC Jt

For variables we must 6rst scan down the static chain to the environment of definition of the variable.

Then the value of the local variable from that environment's activation record can be loaded onto the

stack:

SKIP<5
v =* LOD

where 6 is the static distance to v's activation record.

The code for an application is illustrated by this example:

X
X+Y =*> Y

ADD

The X and Y on the right represent the code corresponding to the X and Y on the left. Thus we gen-

erate code that executes A' and Y in order and leaves their values on the stack, where they can be

popped by ADD.

4.2 Conditional Expression

Code for a conditional first evaluates the condition, leaving a Boolean value on the stack. A JMPT

instruction can then be used to test this value, skipping the alternate and jumping to the consequent

when the value is true.

B

JMPT t

(if B F

then T ==> JMPu;

else F
)

LBL t

T

LBL uj

Of course the code for the alternate must end with a JMP to skip the consequent.



4.3 Blocks

The first step in the code for a block is the evaluation of the bound value E in the surrounding con-

text. Two macro instructions, ENTER and EXIT, surround the block body B, and handle the entry and

exit of the block context:

E

let. = ^ ENTER
B

]

"* B
EXIT

The ENTER macroinstruction must create the block's activation record, incorporating the bound value.

and link the activation record into the static chain. It is equivalent to the following operations:

PUSH EP {SL}

EP-SP {setEP}

That is, we push the old value of the EP register (which is a pointer to the surrounding context) onto

the stack, thus forming the static link of the new activation record. The value of the bound value E is

already on the stack, where it will be accessible as the local value in the new activation record.

Transferring the contents of the stack pointer (SP) to the environment pointer (EP) installs the new

activation record as the active one.

The EXIT macroinstruction must save the value computed by the block (which is on the top of the

stack) while the block's activation record is deleted. Its code expansion is straight-forward:

POPTl {block value}

POPEP {SL}

POP- {local}

PUSH Tl {block value}

4.4 Function Definition

Consider a function definition such as the following:

[func / n = B

X\



This is very much like a let block, except that execution of the function body B must be deferred until

the function / is invoked:

JMP uj {skip function body}

LBL <t> {entry point}

B {body of function}

RETURN {return to function}

LBL uj {here to skip function body}

LDC 4> {stack entry point}

ENTER {enter func. defn. block}

A' {body of func. defn. block}

EXIT {exit func. defn. block}

The function body is represented by the LBL <f>
(which is its entry point), the code B. and the

RETURN macroinstruction (which is discussed below). The JMP w skips the function body, thus

deferring its execution. The LDC stacks the entry point address as the local value of the function

block, which is then ENTERed and EXITed in the usual way.

4.5 RETURN Instruction

The RETL'RN macroinstruction has the task of saving the function's value (which is on the top of

the stack), restoring the caller's environment, deleting the function's activation record, leaving the

function? value on the top of the stack, and resuming execution of the caller. The code to accomplish

this is:

POPTl {return value}

POP EP {caller's EP}

POP T2 {caller's IP}

POP- {SL}

POP - {param}

PUSH Tl {return value}

JMP T2 {resume caller}

-6-



The first POP saves the function's value in temporary register Tl. The second restores the callers

environment from the dynamic link (EP'IP pair). The third saves the caller's resumption address in

temporary register T2. The next two POPs delete the function's activation record. The PUSH instruc-

tion puts the function's value back on the top of the stack, and the indirect JMP through T2 transfers

control back to the caller.

4.6 Function Invocation

The code sequence for the function application '/ X* is as follows:

X
SKIP S

f X => LOD
SKIP 6 + 1

CALL

where 6 is static distance to /'s environment of definition. The first SKIP moves to the activation

record of the function block so that the LOD can access the entry address. The second SKIP, which

goes one static link further, accesses the environment of definition of the function. The CALL

macroinstruction completes the invocation process.

The CALL macroinstruction has the task of constructing an activation record for the callee and

transferring control to the callee. This is accomplished by the following code expansion:

POPTl {get env. of defn.}

POP T2 {get entry address
}

PUSH Tl {static link }

PUSH p {callers IP}

PUSH EP {callers EP}

EP-SP-2 {callee's SL}

JMP T2 {enter function}

LBL p {return location}

On entry to the CALL macroinstruction the top of the stack is the environment of definition of the cal-

lee, the second on the stack is the entry point address, and the third on the stack is the actual parame-



ter value:

env. of defn.

entry point

:tual

The first two are saved in registers Tl and T2. The actual parameter is left on the stack to form the

first component of the callee's activation record. The next component is its static link (whose value

was saved in register Tl). Then we save the caller's IP (the resumption address p) and EP (which was

in the EP register); together they, constitute the dynamic link back to the caller. Finally, EP— SP—

2

installs the callee's activation record as the active one, and the indirect JMP through T2 transfers con-

trol to the function. The LBL p of course defines the return point in the caller. (Exercise for the

reader: Why '-2' in 'EP— SP— 2"?) The completed activation record looks like this:

ep

•P

SL

param.

4.7 Example

Consider the following simple program:

|letK = 4

'firnc fac n =

(if (n = 0)

then 1

else ( n x fac ( n - 1
) ) )

fac K 1 1

The following code will be generated:



LDC 4 local value K = 4

ENTER enter let K =

JMP L3 skip body of fac

LBL L4 entry point of fac

SKIP access formal n

LOD fetch value n

LDC stack

EQL compare, (n = 0)

JMPT Ll if true, skip alternate

SKIP access formal n

LOD fetch value n (to multiply)

SKIP access formal n

LOD fetch value n (to subtract)

LDC 1 stack 1

SL B compute actual param (n — 1

SKIP 1 access defn of fac

LOD fetch entry point address

SKIP 2 access fac's env. of defn.

CALL call fac (n - 1)

MUL multiply n by result of fac

JMP L2 skip consequent of if

LBL Ll alternate of if:

LDC 1 stack 1

LBL L2 end of if

RETURN return from fac

LBL L3 here to skip over fac

LDC L4 stack entry point of fac

ENTER enter 'func fac = ' block



SKIP 1 access context of K

LOD fetch value of K

SKIP access context of fac

LOD stack entry point of fac

SKIP 1 access env. of defn. of fac

CALL call fac K

EXIT exit func fac = '

EXIT exit iet K = '

Exercise for the reader: trace the execution of this program showing all stack states.

•10-



5. Code Generation

5.1 Introduction

The code generator is like Eval and Unparse, except that we change the domain on which the

evaluation is done:

Unparse(£) =^ "(3+5)"

Eval(£,C) ==> 8

CodeGen(£,C) => < LDC [3], LDC(5], ADD>

Notice that the "value" computed by CodeGen is a list of target machine instructions.

5.2 Code Generation Relations

The relations required for code generation are exact analogs of the Eval and Value relations in the

interpreter:

. CodeGen (E, C)

request code generation for E in context C

Degree (CodeGen, 2), Domain (expr, 1, CodeGen), Domain (Context, 2, CodeGen).

. Code {U, E, C)

U is the code for E in C

Function (Code, exprx Context, code-list).

5.3 Constants

The code for a constant is simply the appropriate LDC instruction, which we assume to be generated

by the function Con:

*CodeGen [E, C), Con (£), LitVal ( V, E)

=?> Code (< Con[ V] > , E).

Note that because the range of Code is defined to be a code list, it is necessary to return Conj V\ as a

one-element list.
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5.4 Applications

We need an additional relation. OpCode, which is a table giving the target machine opcode for each

primitive operator. This relation corresponds to the Meaning relation of the interpreter and the Tem-

plate relation of the un parser.

. OpCode {F, N)

• F is the opcode for N

• Function (OpCode, string, operation).

The analysis rule for applications must request the code generation of the two argument expressions:

*CodeGen [E, C). Appl (£), Left (A, E) ,
Right ( Y, E)

=t> CodeGen {X, C), CodeGen ( Y, C).

The synthesis rule catenates the code sequence for the arguments with the appropriate arithmetic opera-

tion found in OpCode:

Appl (£), Op [N, E), Left (A, E), Right ( Y, E),

*Code (U, X, C). *Code ( V, Y, C), OpCode (F, N)

=^> Code [U ' V ' < F> , E. C).

Note that the opcode is made into a one element list so that it can be catenated with the code lists U

and V.

5.5 Conditionals

The analysis rule for conditionals requests the code generation of the three parts of the conditional:

*CodeGen {E, C), ConEx (E), Cond (5, E), Conseq ( T, E), Alt
(
F, E)

=> CodeGen (B, C), CodeGen ( T, C), CodeGen {F, C).

The synthesis rule assembles these with the appropriate jump instructions:

-12-



ConEx (E), Cond (B. E). Conseq (T. E). Alt (F, E)

*Code ( U, B, C), *Code ( V, T, C), *Code ( W, F, C), *Avail (r, w)

=^. Code
(

<JMPT!r]> "

W '

< JMP [w], LBL [r]>
"

r *

<LBL [w]> , £, C).

The only complication is that unique lables r and w must be generated.

5.6 Block Structure

Contexts will be computed during code generation just as they are during evaluation. However, a

name is bound to its static nesting level instead of its value (which is not known until runtime).

Variable lookup is requested by the Access relation: its static nesting level is returned in the Loca-

tion relation.

. Access [N, D, E, C)

access N in D for E in C

Function (Access, expr* Context, stringxContext).

• Location (L, E. C)

L is the location for E in C

Function (Location, exprx Context, integer).

The rules governing the Access process are exact analogs of the Lookup rules in the interpreter:



*Access (A, D, E, C), Binds {D, A. L),

==> Location (L, E, C)

else *Access (A, D, E, C), Nonlocal [D\ D)

=-> Access (A. D\ £. C)

else *Access (A', D, E, C)

=> Break (''Undefined: " "A, E, C).

5.7 VariabJes

The analysis rule for variables simply request that Access determine the variable's location:

*CodeGen
(
E. C). Var (E), Ident (A, E)

=^> Access (A, C. E. C).

The synthesis rule waits for the static distance to be returned in Location, and incorporates it into the

appropriate SKIP instruction:

Var (£), *Location (L, E, C), Binds (C, -
, K), -Rator (E. -

)

=-> Code (< SKIP : A'-!!, LOD> , £, C).

The condition ' ^Rator (E. — )' is a bit of a kluge; it prevent the activation of this rule on variables that

happen to be the operator of a function application, which must be handled differently. A runtime

structure that supported function-valued functions (and variables) would eliminate the need for this

kluge: exercise for the reader.

5.8 Blocks

The analysis rule for blocks requests code generation for the bound value and the block's body.

*CodeGen (£, C), Block (E), BndVar (A, E), BndVal (X, E) , Body (B, £),

Binds (C, -
, A'), *Avail (D)

=> Context (D). Binds
(
D , A, A + l), Nonlocal (C. D ) , CodeGen (X. C), CodeGen (B. D).

The bound value's code is generated at the same static nesting level as the block (A): the body is gen-

erated at a level one greater (A + l). The synthesis rule merely catenates the code sequences with the

-14-



ENTER and EXIT instructions:

Block (£), BndVal (A, £), Body (B, £), *Code [U, X, C), *Code ( V. B. D). Nonlocal [C, D)

=> Code ( U ' < ENTER> ' V '< EXIT> , E, C).

5.9 Function Definition

Code is generated for a function definition in very much the same way as for a block. The analysis

rule requests code generation for the body of the function and the body of the function block, but this

requires the creation of two new contexts:

*CodeGen (£. C). FunDef (£), FunName (F, E), FunFormal (JV, E)

,

FunBody (B. E) . FunScope (A'. E) . Binds {C. -
. K). *Avail (D. A)

=-> Context (D), Nonlocal (C, D). Binds [D, F, K + 1> ), CodeGen (A. D).

Context {A), Nonlocal [D, A), Binds [A, N, K +2), CodeGen (B, A)

The context D represents the context of the function definition block, which binds F to static nesting

level A'-rl (i.e.. one more than that of the surrounding context). Code for the body A" of the function

definition block is generated in this context D. The context A represents the context of the function's

body, which binds the formal A to its static nesting level (A'^2, i.e., one more than D's). A is the

context in which code is generated for the function's body; notice that the nonlocal environment of .4

includes D, thus permitting recursive function invocations.

The synthesis rule gathers the code generated for the function and block bodies, and assembles it

into the complete code sequence:

FunDef (E). FunBody (B. E), FunScope (A. E) . Nonlocal ( C, D).

*Code ( U, B, A), *Code ( V, A, D), *Avail [u, 4>)

=^> Code
(

< JMP \u], LBL \4>)> ' U '

< RETURN, LBL [w],

LDC \<j>\, ENTER> * V
*

<EXIT>, E, C).
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The label 4> is the function's entry point (which is left on the stack); the label u> is for skipping over the

function's body, so it will not be executed until it is called.

6. Function Invocation

For function invocations the analysis rule requests code generation for the actual parameter, and

lookup for the function's name:

*CodeGen (E. C), Call (£). Rator [F, E), Rand {X, E). Var ( F) , Ident {N, F)

=s> Access [N, C, F, C), CodeGen (A', C).

Note that the code generator requires the Rator to be a variable, and also interprets that variable as the

function's name (as opposed to a variable pointing to the function, etc.).

The synthesis rules picks up from Location the static nesting level at which the function was

defined, and uses it to assemble the code sequence:

Call (E), Rator [F, E), Rand (A, E), "Location (I, F, C). *Code ( V. A, C), Binds (C. -
. K)

=* Code {V '< SKIP \K-L], LOD, SKIP [K-L+l], CALL> . E, C).

The first SKIP accesses the context in which the function was defined, since the local value of this con-

text is the entry point address of the function: see 5.9 Function Definition above The LOD moves the

entry point address to the top of the stack. The second SKIP goes one further than the previous, which

accesses the environment of definition of the function. The actual parameter, entry point address and

environment of definition are left on the stack for the CALL macroinstruction (see 4.6, Function Invo-

cation) .

7

.
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APPENDIX A: Prototype Programming Environment

The following is a loadable input file for the code generator described in this report. Its operation

requires the PI-4 system listed in Part IV
[
MacLennan86bj , which is not reproduced here. The com-

plete system is accepted by the McArthur interpreter
j
McArthur84] , which differs in a few details from

the fi notation used in this report (see [MacLennan84] ). A transcript of a test execution of this

environment is shown in Appendix B.

CODE GENERATOR

Reducing Append Function

fn api LL|

:

if LL= Nil -> (j

else append first LLj , ap jrest
j
LL]

] J

;

! Relations

newrelation

newrelation

newrelation

newrelation

newrelation

newrelation

newrelation

newrelation

newrelation

{"CodeGen"};

{"Code"};

{"Access"}:

{"Location"};

{"OpCode"};

{'Cre ate ConEx Code"}:

{"CreateBlockCode"};

{"CreateFunDefCode"};

{"CreateFunDef2Code"}
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newrelation {"newlab"};

newrelation {"LastLabel"}.

! Machine Op Codes

! Alias procedure to define niladic opcodes:

newrelation {"alias"}.

act {< < if *alias (A, s) -> define {root, s, s}, A (s); > > }•

alias {"LOD"};

alias {"ENTER"};

alias {"EXIT"};

alias {"CALL"};

alias {"RETURN"};

alias {"BREAK"};

! Monadic opcodes:

fn LDC k : "LDC "+ k:

fn JMP [1]: "JMP"^ 1;

fn JMPT ill: "JMPT "+ 1;

fn LBL |1 : "LBL " + 1:

fn SKIP (delta: "SKIP " ^ int_str
|

delta]

;

fn PUSH r : "PUSH " - r;

fn POP jrj: 'POP " + r;

! Opcodes used in operator applications:

OpCode ("ADD", "+ ").

OpCode ('SUB". "-"),

OpCode ("MUL", "x"),

-19-



OpCode ("D IV", »/»),

OpCode ("EQL", "= "),

OpCode ("GTR", "> ").

-20-



! CODE GENERATOR RULES

define {root, "CodeGenRules", < <

! Incomplete Programs

if *CodeGen (E, C), Undef (E)

-> Code (| BREAKj, E, C);

! Constants

if *CodeGen (E. C), Con (E). Litval (V. E)

-> Code ( LDC int_str [Vj]j, E, C);

! Applications: Analysis

if *CodeGen (E. C), Appl (E), Left (X, E) , Right (Y, E)

-> CodeGen (X, C), CodeGen (Y, C);

! Applications: Synthesis

if Appl (E), Op (N. E), Left (X, E). Right (Y, E), *Code (U, X, C). *Code (V, Y. C). OpCode (F, N

-> Code (ap !|U. V, [F]]], E, C);

! Conditionals: Analysis

if *CodeGen (E. C). ConEx (E). Cond (B. E) . Conseq (T. E). Alt (F, E)

-> CodeGen (B, C), CodeGen (T, C), CodeGen (F, C);

! Conditionals: Synthesis

if ConEx (E), Cond (B, E), Conseq (T, E), Alt (F, E),

*Code (U, B. C). *Code (V. T, C). *Code (W, F, C)

-> CreateConExCode (U, V, W, E, C, newlab {}. newlab {});

21-



if *CreateConExCode (U, V, W, E, C, tau, omega)

-> Code (ap
(

(

u,

[JMPT [tau]],

W,

iJMP [omega], LBL [tauj],

V,

LBL [omega]]]], E, C);

! Name Lookup Rules

if *Access (N. D, E, C), Binds (D, N, L)

-> Location (L. E, C)

else if *Access (N, D, E, C), Nonlocal (Dprime, D)

-> Access (N, Dprime, E, C)

else if *Access (N, D, E. C)

-> Break ("Undefined: "4- N. E, C);

! Variables. Analysis

if *CodeGen (E, C), Var (E). Ident (N. E)

-> Access (N, C, E. C);

! Variables: Synthesis

if Var (E), 'Location (L, E, C), Binds (C, -
, K), 'Rator (E, -

)

-> Code ([SKIP [K-Lj, LODj, E, C);

! Blocks: Analysis

if *CodeGen (E, C), Block (E), BndVar (N, E), BndVal (X, E) , Body ( B, E), Binds (C, -
. K)
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-> Create Block Code (C, N, K, X, B, newobj {});

if *CreateBlockCode (C, N, K, X, B, D)

-> Context (D), Binds (D, N, K+ 1), Nonlocal (C, D), CodeGen (X, C), CodeGen (B. D):

! Blocks: Synthesis

if Block (E). BndVal (X, E) . Body (B, E), *Code (U, X, C), *Code (V. B, D), Nonlocal (C. D)

-> Code ( ap [
I U, j ENTERj , V, [ EXIT]

] ]
, E, C)

;

! Function Definition: Analysis

if 'CodeGen (E. C), FunDef (E), FunName (F. E), FunFormal (N, E), FunBody ( B. E). FunScope (X. E

Binds (C, -
, K)

-> Create FunDefCode (C, F, K, X, N, B, E. newobj {}, newobj {}. newlab {}):

if *CreateFunDefCode (C, F, K, X, N, B, E, A, D, phi)

-> Context (D), Nonlocal (C. D), Binds (D, F, K+ 1), CodeGen (X, D), Context (A), Nonlocal (D. A).

Binds (A, N, K+ 2). CodeGen (B, A);

! Function Definition: Synthesis

if FunDef (E), FunBody (B, E), FunScope (X, E), *Code (U, B, A), *Code (V, X. D), Nonlocal (C, D)

-> CreateFunDef2Code (newlab {}, newlab {}. U, V, E, C);

if *CreateFunDef2Code (omega, phi, U, V, E. C)

-> Code (ap
j

jJMP jomegaj, LBL [phi]), U,

J

RETURN, LBL [omega],

LDC [phi], ENTERj, V,

[EXIT]]], E. C):

! Function Invocation: Analysis
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if *CodeGen (E, C), Call (E), Rator (F, E), Rand (X, E), Var (F), Ident (N, F)

-> Access (N, C, F, C), CodeGen (X, C);

! Function Invocation: Synthesis

if Call (E), Rator (F, E), Rand (X, E), "Location (L, F, C), *Code (V, X, C). Binds (C. -
, K)

-> Code (ap [[V, ISKIP [K-L], LOD, SKIP [K-L+ lj, CALL]]], E, C);

! New Label Generator

if *newlab (A), *LastLabel (n)

-> A ("L"- int_str in ). LastLabel (n - 1):

>>}

act {CodeGenRules}.
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! Code Generator Commands

newrelation {"CodeGenPending"}.

define {root, "CodeGenComRules", < <

! codegen Command

if *Command ("codegen"), CurrentNode (E), CurrentContext (C)

-> CodeGen (E, C), CodeGenPending (E), CommandPending (E);

if Code (V. E. C). *CodeGenPending (E). *CommandPending (-
)

-> displays {"Code generation completed."};

! showcode Command

if 'Command ("showcode"), CurrentNode (E), Code (V, E, C)

-> displayn {V};

if Command ("showcode"), CurrentNode (E), 'Code (V. E, C)

-> displayn {"No code available"}:

>>}•

act {CodeGenComRules}.

define {root, "CodeGenTests", < <

if *Test (A, 10) -> { Script
{[

"begin" "let". "K". "#", 4, "next", 'Tunc", "fac". V.

"if", "= ". "Var". "n", "next". "#", 0, "out", "next", "#", 1, "next",

"x". "Var", "n", "next", "call", 'Var", "fac", "next",

"-". 'Var". "n". "next", "#", 1. "root", "in", "next", "in", "next",

"call". 'Var", "fac", "next", 'Var", "K", 'Voot". "codegen", Showcode"

]};
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A ('Test done");

};

act {CodeGenTests}.

LastLabel (0);

if *CurrentContext (— )
-> CurrentContext (newobj {})

.

if CurrentContext (C) -> Binds (C, "", 0).

displayn {"PI-5 System Loaded."}.
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APPENDIX B: Transcript of n Session

The following is a transcript of an fi session illustrating the operation of the prototype programming

environment shown in Appendix A. The assertion 'Script {testscript}' causes the commands in

testscript to be executed in order. The nth testscript is executed by 'Test{n}\ Each command is

printed on a separate line, followed by whatever output is generated by the programming environment.

This transcript was produced by the McArthur interpreter [McArthur84 .

% omega

OMEGA-1 11/30/84

Use Cntl-D or exit{} to quit.

For help, enter help{"?"}.

To report a bug, enter Bugs{}.

newrelation rule activated.

> do{"Pl4.rul"}. do{"Pl5.rul"}.

PI-4 System loaded

OK

> PI- 5 System Loaded.

OK

> Test{l0}.

... begin

... K let

< expr>

...4 #

... next

< expr>

... fac n func

... if
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< expr>

< expr>

. n var

. next

< expr>

0#
. out

(n = 0)

. next

< expr>

• 1 #

... next

< expr>

... x

< expr>

... n var

... next

< expr>

... call

... fac va

... next

< expr>

< expr>

... next

< expr>
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... 1 #

... root

let K = 4

[func far n =

(if (n = 0)

then 1

else (n x fac (n - 1)

< expr> j

... in

4

... next

func fac n =

(if (n = 0)

then 1

else (n x fac (n - 1)

)

< expr>

... in

(if (n = 0)

then 1

else (n x fac (n - 1)

)

... next

< expr>

... call

... fac var

... next
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< expr>

... K var

... root

let K = 4

Ifunc fac n =

(if (n = 0)

then 1

else ( n x fac (n - 1) ) )

fac K
j

... codegen

Code generation completed.

... showcode

LDC 4, ENTER, JMP L3. LBL L4, SKIP 0. LOD, LDC 0, EQL. JMPT Ll, SKIP 0, LOD,

SKIP 0. LOD, LDC 1. SUB, SKIP 1, LOD. SKIP 2. CALL. MUL. JMP L2, LBL Ll. LDC 1,

LBL L2. RETURN, LBL L3. LDC L4, ENTER, SKIP 1, LOD. SKIP 0. LOD. SKIP 1. CALL,

EXIT. EXIT

> exit{}.

Goodbye.

%
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